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The use of reflexion quartets in combination with reflexion triplets in direct methods is shown to be 
equivalent to the maximum-density concept introduced with the procedure of phase correction. For a 
specific form of phase correction it is shown that in addition to the triplet contributions it includes the 
quartet contributions to a phase indication. Probability formulae for the different cases of combined 
triplet-quartet contributions are derived. The possibilities for extension and improvement by using 
other forms of phase correction are given. 

1. Introduction 

'Relations of the second kind' (Schenk, 1973) and re- 
lated procedures are known and used in programs for 
direct sign or phase determination (Stewart, 1970; 
Germain, Main & Woolfson, 1970). In a paper by 
Schenk (1973) the use of reflexion quartets in direct 
methods as an extension of the use of reflexion triplets 
was considered. In this paper for mainly empirical 
reasons the weighting or probability of the quartet con- 
dition, 

cos ((ok, +~n2+(an3 +gh,) -+ 1, (1) 

where --+ means 'is probably' and ha + h2 + h3 + i14 = 0, 
was combined with the weight of corresponding triple- 
product relations 

COS ((fin I + {0n2+ (flh3+n4) --> 1 
COS ((0n, + ~P*3 + (on4+n2) --> 1 
cos (~;On, + rPh4+ Cn2+n3) --+ 1 

(2) 

to improve the reliability of the quartet relation. The 
result of the combined weighting scheme was called a 
'strengthened quartet relationship'. Though used mainly 
with centrosymmetric structures where the relations 
concern signs instead of phases the usefulness for non- 
centrosymmetric structures was stated. 

In a paper by Hauptman (1974) a selection rule and 
an estimation were given for those reflexion quartets 
which probably result in a negative value for the cosine 
invariant of (1). This was called a 'negative quartet 
relation'. A following paper by Schenk (1974) showed 
the application of these negative quartets to centro- 
symmetric structures. 

In a series of papers (Hoppe & Gassmann, 1968; 
Hoppe, Gassmann & Zechmeister, 1970; Gassmann & 
Zechmeister, 1972) a procedure called 'phase correc- 
tion' was introduced and shown to be useful not only 
for completion of partial structures but also to replace 
and substitute the normal extension and refinement 
procedures of direct methods. The theory of phase cor- 
rection explains the differences and advantages com- 
pared with normal direct methods. 

In numerous experiments and actual structure deter- 
minations this theory has been confirmed. For a given 
initial phase set, application of phase correction results 
in a wider range of convergence towards the correct 
phases compared with the normal phase-determination 
procedures (e.g. 'tangent refinement'). 

A major point in the development of phase correc- 
tion was the concept of maximum electron density. In 
phase correction this maximum-density concept intro- 
duces phase values or phase changes which are marked- 
ly different from the normal phase-determination 
process. It will be shown below that this effect is due 
to the inclusion of quartet and higher-order relations 
if a specific form of phase correction is applied. 

2. Notation 

El=Eh,=normal ized structure factor with index h~. 
El =normalized structure factor amplitude. 
~oa = structure factor phase. 
E2+3=Eha+n3=normalized structure factor with index 

h2 + h3. 
E~, = structure factor calculated from modification 

process. 
Ep, b== observed structure factor amplitude. 
@), (cos tp), (Eh,En-n,), (En)=average, expectation 

values. 
Q(r) =electron density. 
Q*(r) = modified electron density. 
g(Q) = modification function. 
N = n u m b e r  of atoms iri unit cell (assuming equal 

atoms). 
T,a, b, c=  parameter and coefficients for cubic-term 

phase correction. 

2 E, EjEk A=--~ 

2 EaEzE3E4 B=-- A 

1 2 2 2 c =  -R E~(E,+E~ + El). 
B 2 

1 2 2 2  2 
D= --~ E2EaE4/(E2+ E~+ E~)- 4C " 
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P = probability. 
R,, Sh= proportionality factors for structure factor 

convolutions. 
I0,I i=modified Bessel functions of the second kind. 
--+='is probably'. 

3. Theoretical considerations 

Most existing phase-determination procedures are ap- 
plied in reciprocal space for several reasons. The main 
reasons are that 

(a) probability estimates are given for the phases as 
functions of structure factor amplitudes and 

(b) for a few initial phases the convolution process 
to get new phases is fast, compared with the equivalent 
operation in real space. 

Nevertheless the investigation of direct methods and 
their interpretation is often much easier in real space, 
as will be demonstrated. 

For ease of argument in our presentation we assume 
equal-atom structures. The change to different atom 
types can easily be done and involves mostly replace- 
ment of N (=  atoms/unit cell) against more compli- 
cated coefficients. 

We consider now different possibilities of modifying 
the electron density in real space. The simple form of 
squaring 

0* =Q2 (3) 

(Sayre, 1952) is the real-space equivalent of the convo- 
lution of structure factors in reciprocal space (Karle 
& Karle, 1966)" 

Eh=Sh ~ Eh,Eh_h,= VN<Ea,Ea_h,> . (4) 
h' 

Deduced from statistical arguments the probability 
that a single contribution of the right side of (4) has a 
phase ((Oh) different from the actual phase (oh of the 
structure factor Eh is given by (Cochran, 1955): 

Generalizing these probability considerations one finds 
that the essential form arises from the expression: 

P(A(O) ~ exp [ - l E a -  (E~,)I2] • (6) 

The interesting, A(o-dependent part of the probability 
is calculated as 

P(A(O) N exp [Eh<ELh> + E_h(E~,>] 

=exp [21E~bS(E~,>l cos A(O], (6a) 

where A(O now means the phase difference between the 
actual and the calculated phase. The normalization of 
the probability gives the proportionality factor. 

The squaring principle automatically leads one to 
higher powers of modification" 

0"=0";  n > 2 .  (7) 

The case n = 3, equivalent to 

0* = 0 3 , (7a) 

shows the general argument involved. The correspond- 
ing double convolution in reciprocal space is" 

E,, = Rh ~ ~ Eh,, Eh,-/1" Eh-,., 
h" h" 

= N<<Eh,,Eh,-h,,>Eh-h,>. (8) 

For a single contribution 

1 
<E~,> = -~- Eh,,E~,,-h,,Eh-h,, 

which leads to a probable-phase indication derived 
from (6a): 

P(0) ~ exp [Eh(E~,> + E_~(E~,)] 

=exp [-~- EhEh,,Eh,_~,,,Eh_h, COS 6] 

P(O) =exp (B cos fi)/Z~zIo(B). (9) 

2 
z(o=(o-<(o,>; A= -VN E,E,.E~_,. 

P(A(o)=exp {A cos (A(o)}/2zdo(A). (5) 

The important point is the dependence on the phase 
difference 

P(A(o)~exp {A cos (A(O)}. (5a) 

This relation can be extended (Cochran, 1955), equa- 
tion (10)] if several phase indications, i. e. several con- 
tributions to the convolution, are present: 

where 

P(A(O) =exp {A' cos (A(o)}/2rclo(A') (5b) 

A I  2 - - ~  IEh ~ E~,Ea-h,[ • (5r) 

The distribution of P(fi) again is peaked at g = 0  like 
(5) for large values of B=(2/N)EhEh,,Eh,_n,,Eh_h,. 
However depending upon the value N this peak will 
not be so distinct, i.e. the probability is less, compared 
with the triple-product peak of (5). 

The effect of modification with higher powers of Q 
is evident. The reciprocal-space representation involves 
multiple convolutions. For a single contribution of 
such a representation the phase indication is again 
calculated after (6a). Raising the power from n to n + 1 
means essentially the inclusion of a factor E/I/N into 
the exponent of (6a). Assuming a reasonable structure 
size, it is obvious that the precision of such a single 
phase indication decreases. 

For the process of phase correction a general modi- 
fication function was introduced (Hoppe & Gassmann, 
1968): 

0* =g(Q). 0 .  (10) 
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As explained in detail in a later paper (Hoppe, Gass- 
mann & Zechmeister, 1970) this function g(Q) must not 
necessarily be analytical if applied in direct space. For 
reciprocal-space application however, it is best to de- 
velop g(o) in a power series to see the convolutions 
involved" 

Q* = ~ a.Q". (10a) 
/1 

The process of phase correction is successful if at least 
three terms of (10a) are present" 

4" = ao + bQ 2 + co 3 • (10b) 

Simple calculations give the coefficients a, b, c as" 

1 - 2 T  I + T  1 
a -  1---Z--fi T , b - 1 - T '  c=  1 - T '  

where 0 _< T<  1 is a parameter for changing the electron 
density (Hoppe & Gassmann, 1968). For simplicity 
and comparison with published results in reciprocal 
space (Hauptman, 1974)I" we take T=½ and we get" 

I" The derivation in this paper corresponds more closely to 
a value T=  0: 0* = 0 + 0 2 -  0 a which assumes a good estimate 
for Eh; see below. 

\ 

' \ ,  ~ 1"0 

'<',,, \o.5 
' \ " ~ .  ~.~.  

- o 5  / 

¢ 

~ p-=p 

0"5 1"0 1"5 P 
Fig. 1. Different types of density modifications which are 

applicable in reciprocal space because of the limited number 
of structure factor convolutions involved. 

t 1.--~7 " 
/ 

~I  / E1 

i~"~ Ez E2÷" / 
/ 

~ E 4 E a + a  

Fig. 2. Phase diagram representing the vector components to 
form the expected structure factor (E~). 

or  
Q* = 302- 2Q 3 (lOc) 

Q, ,., 02 _ 2~3 (lOd) 

which may be compared with the former density mo- 
difications (Fig. 1). 

The form of the reciprocal-space representation of 
(10c) is: 

Eg=31/N(Eh,E~_h,)--2N((Eh,,Eh,_h,,)E~_h, > . (11) 

As can be seen from Fig. 1 the cubic term, i.e. the 
double convolution, is necessary to keep an upper 
limit of electron density and to confine approximate 
densities to sensible physical values (see below). 

What is now the phase indication from single con- 
tributions of (11)? If one assumes three structure fac- 
tors which form one triple product of the double con- 
volution Eh"Eh'-h"Eh-h' in (11) to be known, one ob- 
tains from reasoning similar to that set out in the 
literature the expected value of Ek for fixed values of 
the structure-factors products (Woolfson, 1954): 

2 
<E~>= - -~- Eh,,Eh,-h,,Eh-h, 

3 
+ ~ (E~,,,Eh_~,,+Eh,-h,,Eh-h,+h,,+Eh,Eh-h,) • (12) Vlv  

In this equation are also included the double products 
of the single convolution arising from the structure 
factors Eh,,, Eh'-h" and Eh-h,. These double products 
contain the structure factors Eh-h,,, Eh-h,+~,, and E,,, 
which are also assumed to be known. 

For clarity, indices are now replaced by numbers, 
one summation of numbers means vector addition of 
indices: 

h A 1 ;  h " & 2 ;  h ' - h " A 3 ;  h -h '=A4;  

Equation (12) then reads" 

3 (E2E3 + 4 -Jc- EaE2 + E4E2 + 3) - 2 <E~> = - - ~  +4 ~'V- E2E3E4 • 

(12a) 

The phase probability for this single contribution is 

P ( t ) ~ e x p  [2EI(E~) cos e] 

=exp {E1E2E3+4 cos o~ + E1E3E4+2 

x c o s  P+E~E4E2+3 c o s  ),} 

4 
E1E2E3E4 cos g] . 

N 1 
(13) 

The angles are defined in Fig. 2. 
The exponent of (13) consists of three triple-product 

contributions and one quartet term. We now consider 
the different cases for the evaluation of (13). 
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(a) Negative quartets 
If the triple products vanish because the structure 

factor amplitudes are zero: 

E 3 + 4  - k-'°bs = 0 "  E 2 +  3 - ~s,-h" , =E~,, bs =0 ;  

E 2 + 4  = TT°bs --¢~" (14) . t . , h + h , , _  h, ~ v  , 

the only contribution to <E~) is the last term in (12a). 
Equation (13) then reads with a proper normalization 
denominator: 

P (e )=exp  [ - 2 B  cos 6]/2nlo(2B). (13a) 

Since E2E3E4 is the only contribution to (E~> 

cos e = cos ( n - f i ) =  - c o s  ~ (see Fig. 2).  

The so-called cosine invariant is then: 

f 2'~ I1(2B) <cose)=  P(e) cos e de= • (14) 
~o I0(2B) ' 

In contrast to (9) the probability of (13a) is peaked at 
O=n, indicating a high probability that the product 
E2E3E4 has the opposite phase of E~. This is the case 
of a so-called 'negative quartet' .  

(b) Strengthened quartets 
If all (or at least one) of the triple products in (13) are 

large in comparison with the quartet term, the phase 
of <E~) tends to the phase of EI and P(e) is peaked 
around e = 0. This is the case of a so-called 'strength- 
ened quartet' ,  because equations (5b) and (9) are 
peaked at A~0 =0,  fi= 0 respectively, indicating that the 
phase of <E~> has a large probability of being near 
the phase of E~. 

To get a measure of how the triple products 
strengthen the probability of (13) compared with the 
quartet probability of (9) one must replace E2+a, E2+4, 
E3+ 4 with their expected values from E2, E3, E4: 

1 
E a E 2  + 3 = (E2E3  + E1E_ 4) " E4 " I/N 

1 
E 2 E 3 + 4 = ( E 3 E 4 + E 1 E _ 2 )  . E 2 . l/N 

1 
E3E4 + 2 = (E4E2 + E 1 E _  3) • E3 • I / N  " 

Summing these equations results in 

05) 

E 4 E 2  +3 + E 2 E 3  +4 + E 3 E 4  +2 

1 
= [3E2E3E4 + Ex(E2 2 + E 2 + E2)]. l /N" 

Equation (12a) then reads: 
3 

<E [> = [3E2E3E4 + E~(E2 2 + E 2 + E~)]. m 

2 E2EzE4 = 1 [3Ez(E 2 + E] + E42) - - ~  -~- 

+ 7E2E3E4] 

(15a) 

(16) 

2 [3E2(E 2+ 2 2 2EI<E~> cos e=  - ~  Ea + E4) 

+7EIEzE3E4 cos ~]. (16a) 

The result for the probability is calculated by leaving 
out the constant term which changes only the normali- 
zation constant: 

P(e)'~exp[7-~E1E2E3E4cos~] =exp [7B cos ~]. 

(17) 

For a specific value of e there are two possible values 
~1 and ~2 as can be seen from Fig. 3. The probability 
is then 

P(e)~½ {exp (7B cos fil)+exp (7B cos ~2)} (17a) 

with a limiting value of 

sin Ema x = - -  COS ~0 7 2 2 2 =xEIE2E3E4/EI(E2 + E3 + E~) . 

The extreme values of the probability are therefore: 

e = 0 :  P(0),,-cosh (7B) 

e = e m a x :  e (emax) 

,-, exp [-49BEIE2EaEd3E2(E22 + EZa + E2)] 

P(emax) ,-, ex p ( - - ~ D ) ,  

where 
1 2 2 2 2 D= --~ E2E3E4/(Ez+ E] + E~) . 

The triple-product contributions alone without the 
quartet contribution would result in a circle with 
sin emax = 9/7 sin Ema x and a corresponding less distinct 
phase indication. 

< E D ~  7B/2E1 

3C/E,~/y --f 
7B/E1 

Fig. 3. Phase indication from combined triplet-quartet indica- 
tions. The expected structure factor <E~> lies on a circle 
with radius 7B/2E~. For a specific value of e two values of 
6 are possible. The maximum value for phase deviation is 
e ... .  Increasing the component of <E~) in direction of Et 
by a good estimate of El means further reduction of e .... 
The dashed circle shows the phase indication from the 
triplet contributions alone. 
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The probability of (17a) is however an overestima- 
tion, because the expectation values in (15) require the 
knowledge of El.~f 

Assuming only the structure factors E2, E3 and E 4 

to be known, the phase of E~ calculated after (8) differs 
by fi from the exact phase ~01. This changes (16a) to: 

2 [3E~(E~ + Ea 2 + E~) 2EI(E~) cos e=  --~ 

-k- 7&E2E3E4] cos a, (16b) 

and (17) to: 

P(e) ~ exp [6C + 7B] cos ~.  (17b) 

The 'strengthening' of the phase indication can be seen 
from (17b) in comparison with (9). 

If the contribution to E2 + 3, E2 + 4 and E3 + 4 containing 
the value E, is taken as totally unknown and left out, 
the result is as follows: 

Assuming in (12a) that: 

E2E~ 
E2+3 >-- ~ -  

EzE4 
E3+4 >_ TN- 

E4E2 
E4+2 > _ ---~---, (18) 

(e) Weakened triplets 
Instead of naming the case of the just-assumed phase 

distribution a 'strengthened quartet relation', it could be 
called a 'weakened triple-product relation' because the 
negative contribution of the quartet term EIE2E3E4 to 
(E~) reduces the probability for a correct phase indi- 
cation compared with the phase indication calculated 
from the triple-product contributions alone. 

To get a measure of how the quartet term reduces 
the probability calculated in (13) compared with the 
probability of the triple products alone, one takes the 
average of the quartet contribution: 

1 
( P ( f i ) ) -  I0(2B) " exp { - 2 B ( c o s  fi)} 

1 { Ix(2B) "~ 
- I 0 ( 2 B )  e x p _ - 2 B  I0(2B) J" (20) 

Defining 

P(oc, fl, Y)"~exp [~N (E, EzE3+4 cos o~ 

+ E, EaE4+2 cos fl+ E1E4E2+3 cos ~] 
i 

as the probability arising from the triple products, one 
gets for the overall probability: 

P ( Q = P ( a ,  fl, y) exp ( -  ~ Ix(2B) \ 2Z~fo~o(2B-j- ) / Io(2B) .  (21) 

the single-triple-product phase indications a, fl and 7 
after (5) are better or equal to the value ~ of the 
quartet phase indication. A lower limit P*(e) for the 
probability of (13) is then given if one replaces cos a, 
cos fl and cos 7 by cos ~: 

P(e)>P*(e)~exp [-~N {E~EzE3+4+E~E3Ez+4 

+ E1E4E2 + 3}- --~ E~E,E3E,] cosa .  (18d) 

For the case of the equality in at least one of the equa- 
tions (18) one gets: 

2 
P*(e) ~exp ~ EIE2E3Ea cos f i=exp B cos ~. (19) 

which is equal to the quartet indication of (9). The 
probability P(e) from (13), i.e. the resulting phase indi- 
cation ~ is therefore always superior to the quartet 
indication ~ if at least one of the inequalities in (18) 
is fulfilled. 

t Furthermore because of the probabilistic nature of (12) 
and (15) there cannot be a boundary on the possible values of 
(E~), implying that the consequences deduced [(17a) and Fig. 3)] 
are only an algebraic result. This has been pointed out by the 
referee. 

For small values of B this may be written as: 

P(e)=P(~,fl,7). exp ( - 3 B  2) (21a) 

where the exponential term shows the decrease in 
probability for the triple products involved. 

4. Further improved phase indications 

The probability expressions derived above are due 
to a very specific form of phase correction. The ques- 
tion arises if it is possible to improve further the phase 
indications by generalizing the modification functions. 

(a) General cubic-term phase correction 
The general form of cubic-term phase correction is 

written in reciprocal space as: 

Ibl (E2E3+ 4 or_ E3E2+4 q_ E4E2+3 ) <E~) =aE~St + - - ~  

Icl 
-- _ _  E2E3E 4 

N 
with 

a < l ;  b > l ;  c < - l ;  

(22) 

E~ st is an initial value for'E1, not deduced from statis- 
tics. A calculation equivalent to the derivation of 
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(17b) leads to the following result: 

2EI(Eg) cos e=2aE~ cos w 

+ [2b .  C+(3b+c)B] cos 
where 

1 2 2 C= ~ E~(E2 + E] + EZ4) , 
2 + 3 T  

3b+c-  
1 - T  

(23) 

and w is the phase difference of the estimate E~ st. 
The important point is that the contribution connected 

with the second term in (23) gets smaller if a lower 
critical density T is assumed. 

With a good estimate E~ st, corresponding to the 
first term in (23) the maximum probability will be 
moved away from the origin, 'mainly along the direc- 
tion of El. This means that the phase indication gets 
more distinct. Comparing (17b) and (23) gives an im- 
provement of phase indication for: 

2aE~ cos w + [(3b + c)B 

+2bC] cos f i> [7B+6C]  cos fi ; (24) 

with results in 

cos w> --~2 {[EIEzE3E4/E~ + E~ + E] + El} . (24a) 

This result means that for an approximate phase indi- 
cation better than cos w~l /N,  application of the 
general cubic-term phase correction is superior to the 
special cubic-term phase correction of (10c). At the 
same time it indicates for what values of approximate 
start phases one may expect convergence to the correct 
result through application of phase correction. 

(b) General real-space phase correction 
As can be seen from Fig. 1 even with a general 

cubic-term phase correction it is not possible to modify 
the electron density Q correctly over the whole range 
of 0. For negative regions and for positive regions 
0 > 1 it should be Q*= 0 (see Fig. 4). Such a behaviour 
could be approximated by including higher coefficients 
according to (10a). This would result in alternating 
values for the coefficients of successive powers of 0. 
The reciprocal-space treatment corresponding to (11) 
would result in multiple convolutions• Assuming a 
modification function 

O* = ao + bo" + co" + 1, ( 1 0 e )  

simple calculations give the coefficients as: 

a - - -  

b =  

Q - ( n +  I) . T "-~ 
Q - n .  T "-1 

Q 
Q - n .  T "-1 

Q_T,,-1 
Q - n T " - '  

with 
n--1 

Q = ~  T k . 
k = 0  

Requiring Q = ( n +  1)T "-1 we get the general form of 
(10c): 

0 * = ( n +  1)o"-n0"+a; n > 2 .  (10f) 

The assumption of a good estimate for Eh implies 
values for the coefficients a, b, c, by approaching T =  0, 
which results in: 

0 " = 0 + 0 " - 0  "+1 . (10g) 

Between these extreme modifications are the inter- 
mediate forms with 0 < T< ½. 

The characteristic analytical behaviour of (10f) is 
shown in Fig. 4. Depending on the even or odd value 
of n, negative density regions are modified differently. 
The critial value T for increasing or decreasing the 
density can be shown to change with the power n as: 

2 
o*( r) = T,~ 1 

n(n+ 1) ' 

The reciprocal-space analogue of (10f) contains n- 
tuple convolutions which might be difficult to calcu- 
late and to program in an actual phase determination 
procedure. 

It is however much simpler to apply such modifica- 
tions in real space. The electron density Q itself is 
modified to the corrected density 0* and then trans- 
formed to get structure factor values with a backward 
Fourier transformation. The corrected density Q* auto- 
matically contains all powers of Q pertaining to the 
chosen modification form. A simple real-space modifi- 
cation, the so called 'linear form' (see Fig. 4) has been 
shown to be successful• 

1.b 

/ 

J 
YX?-- 

, / 

"" L _ J  
• 1 "0 1 "33 

Fig. 4. Characteristic differences between modification func- 
tions #*=a0+ba"-Icl0 "+x for the assumed values n=2 and 
n = 3. The modification with n = 3 needs better start phases 
since T=0.77 and treats regions 0 > 1.43 and # < -0.43 in- 
correctly. The 'linear-form' modification is derived from the 
power-series modification. For the range 1 <0 <-- 8/6 the 
value of a* has been fixed to unity to allow for the density 
of oxygen atoms. 
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The inclusion of higher powers of Q certainly in- 
creases the range of convergence to the correct phase. 
It is a safe assumption that the condition for the con- 
vergence angle w for all reasonable real-space modifi- 
cations is relaxed to: 

cos w > O. (24b) 

Some of the consequences arising from the modifi- 
cation described above will now be discussed. 

array size M is not large enough (Gassmann & Hof- 
mann, 1975). 

Conclusions 

The concept of maximum electron density introduced 
with phase correction leads to improved phase indica- 
tions. The probability formulae derived show the pos- 
sibilities of phase correction in structure determination. 

5. Application for phase determination 

The cyclic process of phase correction has been de- 
scribed (Gassmann & Zechmeister, 1972; Gassmann, 
1976). The inclusion of very high powers of Q due to a 
nonanalytical form of the modification and the elimi- 
nation of physically nonsensible regions (nonlocal 
weighting) leads to spurious, weak phase indications 
for some reflexions. To exclude these phases from the 
next cycle of phase correction, one must set an accep- 
tance criterion for a newly determined phase. From 
(6a) one recognizes that the essential factor is 
E°bS(EC), which must lie above a certain limit to have 
a reasonable probability for a correct phase indication. 
Only if 

E°bS(E c) > limit (24) 

is a phase accepted as input to the next phase-correc- 
tion cycle. 

The application of real-space phase correction has 
been simplified by the use of the fast Fourier transform 
(FFT) (see e.g. Barrett & Zwick, 1970). The use of the 
FFT-algorithm may however lead to difficulties since 
an intrinsic assumption of the algorithm is the non- 
existence of frequencies (=structure factors) higher 
than M/2, where M is the array size of the FFT-trans- 
form. A modified electron density Q* may contain very 
high resolution structure factors. These values are then 
intermixed with low resolution structure factors, if the 

The author is grateful to Professor W. Hoppe for his 
continuous support of this work and thanks Dr P. 
Colman for stimulating discussions. 
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